Combination of twelve alleles at six quantitative trait loci determines grain weight in rice
نویسندگان
چکیده
Grain weight, which is controlled by quantitative trait loci (QTLs), is one of the most important determinants of rice yield. Although many QTLs for grain weight have been identified, little is known about how different alleles in different QTLs coordinate to determine grain weight. In the present study, six grain-weight-QTLs were detected in seven mapping populations (two F2, one F3, and four recombinant inbred lines) developed by crossing 'Lemont', a United States japonica variety, with 'Yangdao 4', a Chinese indica variety. In each of the six loci, one allele from one parent increased grain weight and one allele from another parent decreased it. Thus, the 12 alleles at the six QTLs were subjected to regression analysis to examine whether they acted additively across loci leading to a linear relationship between the predicted breeding value of QTL and phenotype. Results suggested that a combination of the 12 alleles determined grain weight. In addition, plants carrying more grain-weight-increasing alleles had heavier grains than those carrying more grain-weight-decreasing alleles. This trend was consistent in the seven mapping populations. Thus, these six QTLs might be used in marker-assisted selection of grain weight, by stacking different grain-weight-increasing or -decreasing alleles.
منابع مشابه
Combination of Eight Alleles at Four Quantitative Trait Loci Determines Grain Length in Rice
Grain length is an important quantitative trait in rice (Oryza sativa L.) that influences both grain yield and exterior quality. Although many quantitative trait loci (QTLs) for grain length have been identified, it is still unclear how different alleles from different QTLs regulate grain length coordinately. To explore the mechanisms of QTL combination in the determination of grain length, fiv...
متن کاملIdentify QTLs for grain size and weight in common wild rice using chromosome segment substitution lines across six environments
Grain size and weight are important determinants of rice yield. The identification of beneficial genes from wild rice that have been lost or weakened in cultivated rice has become increasingly important for modern breeding strategies. In this study, we constructed a set of chromosome segment substitution lines (CSSLs) of wild rice, Oryza rufipogon with the indica cultivar 9311 genetic backgroun...
متن کاملIdentification of Genomic Regions and the Isoamylase Gene for Reduced Grain Chalkiness in Rice
Grain chalkiness is an important grain quality related to starch granules in the endosperm. A high percentage of grain chalkiness is a major problem because it diminishes grain quality in rice. Here, we report quantitative trait loci identification for grain chalkiness using high-throughput single nucleotide polymorphism genotyping of a chromosomal segment substitution line population in which ...
متن کاملUnveiling the genetic loci for a panicle developmental trait using genome-wide association study in rice
Panicle size has a high correlation with grain yield in rice. There is a bottleneck to identify the additional quantitative trait loci (QTL) for panicle size due to the conventional traits used for QTL mapping. To identify more genetic loci for panicle size, a panicle developmental trait (LNTB, the length from panicle neck-knot to the first primary branch in the rachis) related to panicle size ...
متن کاملQTL analysis on rice grain appearance quality, as exemplifying the typical events of transgenic or backcrossing breeding
Rice grain shape and yield are usually controlled by multiple quantitative trait loci (QTL). This study used a set of F9-10 recombinant inbred lines (RILs) derived from a cross of Huahui 3 (Bt/Xa21) and Zhongguoxiangdao, and detected 27 QTLs on ten rice chromosomes. Among them, twelve QTLs responsive for grain shape/ or yield were mostly reproducibly detected and had not yet been reported befor...
متن کامل